8,318 research outputs found

    Universal dynamics on the way to thermalisation

    Get PDF
    It is demonstrated how a many-body system far from thermal equilibrium can exhibit universal dynamics in passing a non-thermal fixed point. As an example, the process of Bose-Einstein (BE) condensation of a dilute cold gas is considered. If the particle flux into the low-energy modes, induced, e.g., by a cooling quench, is sufficiently strong, the Bose gas develops a characteristic power-law single-particle spectrum n(k)∼k−5n(k)\sim k^{-5}, and critical slowing down in time occurs. The fixed point is shown to be marked by the creation and dilution of tangled vortex lines. Alternatively, for a weak cooling quench and particle flux, the condensation process runs quasi adiabatically, passing by the fixed point in far distance, and signatures of critical scaling remain absent.Comment: 5+2 pages, 8 figure

    Intercluster Correlation in Seismicity

    Full text link
    Mega et al.(cond-mat/0212529) proposed to use the ``diffusion entropy'' (DE) method to demonstrate that the distribution of time intervals between a large earthquake (the mainshock of a given seismic sequence) and the next one does not obey Poisson statistics. We have performed synthetic tests which show that the DE is unable to detect correlations between clusters, thus negating the claimed possibility of detecting an intercluster correlation. We also show that the LR model, proposed by Mega et al. to reproduce inter-cluster correlation, is insufficient to account for the correlation observed in the data.Comment: Comment on Mega et al., Phys. Rev. Lett. 90. 188501 (2003) (cond-mat/0212529

    Critical Dynamics of a Two-dimensional Superfluid near a Non-Thermal Fixed Point

    Full text link
    Critical dynamics of an ultracold Bose gas far from equilibrium is studied in two spatial dimensions. Superfluid turbulence is created by quenching the equilibrium state close to zero temperature. Instead of immediately re-thermalizing, the system approaches a meta-stable transient state, characterized as a non-thermal fixed point. A focus is set on the vortex density and vortex-antivortex correlations which characterize the evolution towards the non-thermal fixed point and the departure to final (quasi-)condensation. Two distinct power-law regimes in the vortex-density decay are found and discussed in terms of a vortex binding-unbinding transition and a kinetic description of vortex scattering. A possible relation to decaying turbulence in classical fluids is pointed out. By comparing the results to equilibrium studies of a two-dimensional Bose gas, an intuitive understanding of the location of the non-thermal fixed point in a reduced phase space is developed.Comment: 11 pages, 13 figures; PRA versio

    Motion of a condensate in a shaken and vibrating harmonic trap

    Full text link
    The dynamics of a Bose-Einstein condensate (BEC) in a time-dependent harmonic trapping potential is determined for arbitrary variations of the position of the center of the trap and its frequencies. The dynamics of the BEC wavepacket is soliton-like. The motion of the center of the wavepacket, and the spatially and temporally dependent phase (which affects the coherence properties of the BEC) multiplying the soliton-like part of the wavepacket, are analytically determined.Comment: Accepted for publication in J. Phys. B: At Mol Opt Phy

    Calculation of the microcanonical temperature for the classical Bose field

    Full text link
    The ergodic hypothesis asserts that a classical mechanical system will in time visit every available configuration in phase space. Thus, for an ergodic system, an ensemble average of a thermodynamic quantity can equally well be calculated by a time average over a sufficiently long period of dynamical evolution. In this paper we describe in detail how to calculate the temperature and chemical potential from the dynamics of a microcanonical classical field, using the particular example of the classical modes of a Bose-condensed gas. The accurate determination of these thermodynamics quantities is essential in measuring the shift of the critical temperature of a Bose gas due to non-perturbative many-body effects.Comment: revtex4, 10 pages, 1 figure. v2: updated to published version. Fuller discussion of numerical results, correction of some minor error

    Earthquake Size Distribution: Power-Law with Exponent Beta = 1/2?

    Full text link
    We propose that the widely observed and universal Gutenberg-Richter relation is a mathematical consequence of the critical branching nature of earthquake process in a brittle fracture environment. These arguments, though preliminary, are confirmed by recent investigations of the seismic moment distribution in global earthquake catalogs and by the results on the distribution in crystals of dislocation avalanche sizes. We consider possible systematic and random errors in determining earthquake size, especially its seismic moment. These effects increase the estimate of the parameter beta of the power-law distribution of earthquake sizes. In particular, we find that estimated beta-values may be inflated by 1-3% because relative moment uncertainties decrease with increasing earthquake size. Moreover, earthquake clustering greatly influences the beta-parameter. If clusters (aftershock sequences) are taken as the entity to be studied, then the exponent value for their size distribution would decrease by 5-10%. The complexity of any earthquake source also inflates the estimated beta-value by at least 3-7%. The centroid depth distribution also should influence the beta-value, an approximate calculation suggests that the exponent value may be increased by 2-6%. Taking all these effects into account, we propose that the recently obtained beta-value of 0.63 could be reduced to about 0.52--0.56: near the universal constant value (1/2) predicted by theoretical arguments. We also consider possible consequences of the universal beta-value and its relevance for theoretical and practical understanding of earthquake occurrence in various tectonic and Earth structure environments. Using comparative crystal deformation results may help us understand the generation of seismic tremors and slow earthquakes and illuminate the transition from brittle fracture to plastic flow.Comment: 46 pages, 2 tables, 11 figures 53 pages, 2 tables, 12 figure

    Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    No full text
    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activit
    • …
    corecore